Editorial: Parasite Infections: From Experimental Models to Natural Systems
نویسندگان
چکیده
The aim of this research topic is to illustrate the multidisciplinary approaches of modern parasitology. The motivation to study parasites and parasitism varies. In the case of human and animal parasites, research is often motivated by the tremendous health threats and socioeconomic burden they pose. For instance, Plasmodium, the causative agent of malaria, continues to be the most important vector-borne pathogen and was responsible for more than 200 million new cases and 400,000 deaths worldwide in 2016 (WHO, 2016a). Another example is soil-transmitted helminth infections affecting 24% of the world’s population, primarily school children (WHO, 2017). Many parasites are etiologic agents of infections classified as Neglected Tropical Diseases (NTDs) and continue to afflict societies with limited resources (Hotez et al., 2007). Moreover, research on parasites of wildlife can be critical for understanding animal communities and disease ecology (Gomez and Nichols, 2013; Johnson et al., 2015) and—by extrapolation—ecosystems’ dynamics. Parasites are defined by life style but reflect polyphyletic groups of protozoa, helminthes, and arthropods. In investigating these non-model organisms, studies on parasites often fall short of in-depth molecular, genetic, or biochemical analyses that characterize investigations of established laboratory-adapted organisms. This research topic (RT) collates 20 contributions by >100 authors, which we introduce here briefly by classifying them according to four sections along the path from experimental models to natural systems:
منابع مشابه
Mixed models: getting the best use of parasitological data.
Statistical analysis of parasitological data provides a powerful method for understanding the biological processes underlying parasite infection. However, robust and reliable analysis of parasitological data from natural and experimental infections is often difficult where: (1) the distribution of parasites between hosts is aggregated; (2) multiple measurements are made on the same individual h...
متن کاملA novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.
The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were...
متن کاملExperimental Models to Study the Role of Microbes in Host-Parasite Interactions
Until recently, parasitic infections have been primarily studied as interactions between the parasite and the host, leaving out crucial players: microbes. The recent realization that microbes play key roles in the biology of all living organisms is not only challenging our understanding of host-parasite evolution, but it also provides new clues to develop new therapies and remediation strategie...
متن کاملThe role of phylogeny and ecology in experimental host specificity: insights from a eugregarine-host system.
The degree to which parasites use hosts is fundamental to host-parasite coevolution studies, yet difficult to assess and interpret in an evolutionary manner. Previous assessments of parasitism in eugregarine-host systems suggest high degrees of host specificity to particular host stages and host species; however, rarely have the evolutionary constraints on host specificity been studied experime...
متن کاملAnopheles and Plasmodium: from laboratory models to natural systems in the field.
Parasites that cause malaria must complete a complex life cycle in Anopheles vector mosquitoes in order to be transmitted from human to human. Previous gene-silencing studies have shown the influence of mosquito immunity in controlling the development of Plasmodium. Thus, parasite survival to the oocyst stage increased when the parasite antagonist gene LRIM1 (leucine-rich repeat immune protein ...
متن کامل